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Abstract

Myocardial infarction is one of the main causes of
morbidity and mortality worldwide. Among the pos-
sible treatments for blood flow obstruction, an emerg-
ing technique is named sonothrombolysis. To reach
satisfactory results, the event allied to the technique
(cavitation of microbubbles) needs to be controlled, so
harm to the patient can be avoided. In view of that,
this study aimed to detect and classify the phenomenon
during sonothrombolysis therapy through the use of ar-
tificial intelligence.

The signals were generated considering an 8 × 8
transducers’ matrix, and an automatic and uncom-
plicated classifier method was proposed, based on the
Continuous Wavelet Transform tool and Convolu-
tional Neural Network (CNN) approach. The method
made use of a pre-trained CNN, called AlexNet, op-
erating a database of 2,800 waves for training, test-
ing, and validation. The evaluation of the statistics
included both the detection using broad and narrow
bands, the noise level applied, and the database size.

For the case of narrowband receivers, the results of
the study indicated an accuracy of around 95.7%. The
result demonstrates that the use of artificial intelli-
gence could be an approach to explore the detection of
cavitation for therapies applying ultrasound.

1. Introduction

Approximately 1.5 million cases of myocardial in-
farction (MI) occur annually in the United States; the
yearly incidence rate is close to 600 cases per 100,000
people [1]. Ultrasonic energy has been assessed exten-
sively as a method to promote thrombolysis [2], and
when the amount of energy is sufficient along with
the use of microbubbles (MBs), the activity can re-
store the blood flow of vessels, and such a procedure is
called sonothrombolysis. Sonothrombolysis is a novel
therapy that has as its main benefits the noninvasive
and non-ionizing features [3].

By the application of acoustic emissions directed to
the thrombus location, the intention is to mechani-
cally break up the occlusive blood clot through the
cavitation of MBs. A very important caution to be
avoided is the trigger of bubble collapse in not wanted
spots, which could result in damage to healthy tissues.
Therefore, the detection of the type of cavitation that
is occurring and the location, is crucial for methods
that combine acoustic waves and MBs, and consis-
tent sonification is necessary for the method’s safety
and efficacy. That said, this work aimed to develop
a feedback mechanism of detection based on artifi-
cial intelligence (AI) for guidance, expecting that the
computational simulations can predict and classify the
cavitation phenomenon that involves the sonothrom-
bolysis technique.

Currently, some of the feedback methods applied in
the field are the passive cavitation detection (PCD)
technique [4], passive cavitation imaging (PCI) [5],
and active cavitation detection (ACD) [6]. As an al-
ternative, we investigated the possibility of employing
AI as part of a detector approach, since AI has been
an important tool that is extensively applied in med-
ical sciences: diagnosing, remotely treating patients,
and cancer detection based on CT scans are examples
of its significant impact in healthcare [7]. This study
explored the supervised learning category in AI meth-
ods, more specifically a Deep Learning (DL) proposal.

2. Materials and method

Figure 1 shows how the method is organized. First,
the signal’s preprocessing, followed by the feature ex-
traction, and finally the classification.

2.1. Dataset

The database was assembled considering a defined
focus region. It was regarded as an 8x8 matrix of ul-
trasound transducers, which were designed as emitters
and receivers, characterized by a 10.15mm diameter,
and resonance frequency of f0 = 250kHz [8]. The ap-
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Figure 1. Flowchart with the general steps of the process.

proximate heart’s dimensions are 120mm, 85mm, and
60mm, for length, width, and thickness, respectively
[9]. Therefore, to ensure scanning the entire target,
the volume of simulation selected is 120 × 120 × 120
mm3, where 874 foci are distributed in this region.
Figure 2 shows the matrix array illustration.

Figure 2. Normals at transducers’ centers and the
target region.

The signals were generated using the Kwave tool-
box [10] for MATLAB®, where features of the acoustic
medium can be settled, including non-linearities, at-
tenuations, and the matrix array topology. Due to
the different distances along each source’s centers and
the focal location, it was applied the delay-and-sum
approach [11] in the received signals to reconstruct
them constructively. In addition, the types of sources
examined are echo, stable cavitation (SC), and iner-
tial cavitation (IC). Based on [12], the SC produces
ultra-harmonic waves, thus for detection purposes, we
examined the spectral band (width of bands equal to
0.125 × f0) around 1.5 × f0. In contrast, since IC oc-
curs when MBs collapse violently, and the literature
correlates it to the fundamental concept of Kelvin im-
pulse [13] (behavior of a jet impact as a consequence of

a collapsing bubble), we represent the response of the
source as an impulse, and the component frequencies
are spread across the frequency spectrum, hence, we
inspect bands between harmonics and ultra-harmonics
(1.75 × f0 and 2.25 × f0).

The dataset comprises a range of pairs (S, I) in
which the values S and I are multipliers of the prede-
fined 100 kPa amplitude for SC and IC, respectively,
resulting in 2,800 waves for training, testing, and vali-
dation. Besides that, the noise level added follows the
dynamic range of the signals, and we set values of 2%,
5%, and a level between 2 and 5% randomly (RN).

2.2. Continuous wavelet transform
(CWT) scalogram

Since the signals analyzed are structured of differ-
ent frequency elements and are nonstationary, each
signal was transformed to the time-frequency domain
to facilitate feature extraction. The spatial or tempo-
ral representation alone does not represent well cor-
responding data, so CWT [14] is a suitable way to
inspect such source types. The time-frequency spec-
trogram maps the signal differences through the ex-
pansion and contraction of the CWT window. The
CWT for a signal x(t) is defined as

CWT (a, b) = 1√
a

∫ +∞

−∞
x(t) · Ψ

(
t − b

a

)
dt (1)

where a and b are the scales and time shifts of a ref-
erence wavelet Ψ(t), respectively.

For our problem, each signal is composed of 2,257
temporal samples, and the data is converted into time-
frequency spectrograms in which no information over-
laps, thus overfitting problems are avoided.

The chosen wavelet mother Ψ(t) was the Wavelet
Morlet (Gabor) as a parameter of the CWT. We ob-
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tain the absolute wavelet coefficient values from the
signals through the CWT filterbank from Matlab,
rescaling those coefficients to the interval [0,1]. The
second step is converting them into RGB images by
applying the Jet colormap with 256 colors (compatible
with AlexNet inputs). To exemplify the process, Fig-
ure 3 shows the time-domain for signals with different
features and the respective scalograms.

The scales a are used to create the wavelet band-
pass filters and depending on the chosen parameters
as input for the CWT, those values change. They
are discretized considering the number of wavelet fil-
ters per octave, which is 12 for this work, resulting
in 141,000 coefficients for each signal. The larger the
number of voices per octave, the finer the discretiza-
tion of a, thus, the selection of the value considers
the amount of computation required since it increases
with its increment. The number of scales is calcu-
lated considering the energy spread of the wavelet in
frequency and time [15].

With the scalograms set, the database composed
of the constructed images was divided into 70% for
training and 30% for testing and validation.

Figure 3. Signals and RGB images using the Jet col-
ormap. (A) Example of an estimated temporal source
signal with echo, SC, and noise. (B) Example of an
estimated temporal source signal with echo, SC, IC,
and noise. (C) RGB image for signal (A). (D) RGB
image for signal (B).

2.3. Transfer Learning

AlexNet is a CNN known as a leading architecture
for any object-detection task. The model is composed
of 8 layers (5 convolutional layers and 3 fully con-
nected layers) whereby the first layer is used to input
a filtered image with dimensions of 227 × 227 × 3

respectively for width, height, and depth (red, green,
blue), the last fully connected layer connects 1,000
neurons, and the rest of the layers work as feature
extractors.

In this study, we took advantage of the transfer
learning approach, where there is the reuse of a pre-
trained model (AlexNet) on a new problem and no
need to create a CNN model from scratch. To oper-
ate the model for our problem, the last three layers
of AlexNet were replaced: “Fully Connected”, “Soft-
Max”, and “Classification”. Other network parame-
ters are stochastic gradient descent with momentum
(SGDM) as the optimizer, minibatch of size 32, and
maximum epoch of 40 with a learning rate of 1e-4.
CNN is implemented using the Deep Learning Tool-
box Model for AlexNet Network [16] and trained on
the NVIDIA GeForce RTX 970 graphical processing
unit.

3. Results and discussion

The evaluation of our method’s performance is ob-
tained by three metrics: accuracy, precision, and F1-
score, which are applied to analyze the results of trans-
ferred AlexNet.

Table 1. Performance’s results for the different
sources, comparing narrow and broadband receivers,
and distinct levels of noise (2%, 5%, and RN)

Narrowband Broadband
Measure RN 2% 5% RN

Accuracy 95.7 ± 1.0 97.1 ± 0.6 96.1 ± 0.4 98.8 ± 0.4
Precision 96.0 ± 1.1 97.3 ± 0.5 96.3 ± 0.9 98.7 ± 1.0
F1-score 95.9 ± 1.7 97.2 ± 0.7 96.2 ± 0.5 98.7 ± 0.5

Table 1 shows the results both considering narrow
and broadband receivers. The bandwidth of 100% of
central frequency for broadband receivers yielded the
best results (accuracy of 98.8%), which was expected
among the cases proposed. However, the scenario ap-
plying narrowband receivers also produced acceptable
detection indicators, with values of 96% for precision,
95.9% for F1-score, and 95.7% for accuracy for RN
level. Those results suggest that it is possible to de-
tect the phenomenon using the same set of ultrasound
transducers or alternative broadband receivers.

A confusion matrix is also presented to assess the
procedure’s performance for the RN case (Figure 4).
As we can observe, it referred to the 4 types of sources.
The columns correspond to the target class (real clas-
sification) and the rows meet the output obtained
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(method’s classification). The approach’s global accu-
racy acquired was 95.7% (last cell). We can observe
that the mislabelling concentration occurs between
Echo + IC and Echo + IC + SC signals (cell(2,4)).

Figure 4. Confusion Matrix for narrowband receiver
case - RN rate (840 waves for testing and training -
30% of the database).

In addition, to verify the influence of the database
size in the classification, we tested smaller data as in-
put of the CNN, and we attested a significant decrease
in accuracy. For a database of 400 signals, for exam-
ple, we obtained an accuracy of 68.3% for broadband
receivers.

4. Conclusion

In this work, we developed a classification method
for the cavitation phenomenon based on CWT and
CNN. The procedure yields good results for the met-
rics explored, especially considering the few epochs
applied (40), however, it is important to notice that
the mislabelling errors present themselves, especially
in signals with the occurrence of IC, which is the
source we mainly want to supervise.
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